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Abstract—Using the example of the rotating Timoshenko-beam subjected to axial pressure load with internal
and external damping a general circulatory vibration system with distributed parameters is formulated, in
which stability behaviour is discussed in detail.

In partioutar the effect of gyroscopic stabilization and its influence by the different damping mechanisms is
studied. By the means of modern operstor methods the well-known theorems of Thomson and Tait, for
instance, can be generalized for one-dimensional, continwous rotor systems.

1. INTRODUCTION
The equations of stability are well-known for very general rotor systems with concentrated

parameters, which can be described in the usual matrix form
Mij+D+G)}q+(K+N)g=0, 1

where dots denote derivatives with respect to time £ For a mechanical n-degree of freedom-
system q(#) is an n-dimensional representation vector, M, D and K are symmetric and G and N
are antisymmetric matrices of order n. The mass-matrix M is always positive definite. A
detailed discussion of the stability equations according to Lyapunov’s theory of stability can be
found, e.g. in [1). There it is also shown, that the stability behavior of discrete, rotationally
symmetrical, gyroscopic systems with internal and external damping is a general unsolved
problem, which can be solved only by a quantitative calculation for every individual case.
Certain necessary and sufficient conditions for stability, which exist[1,2], can namely not be
utilized. On the other hand, by neglecting different influences in a stepwise manner, this
complex dynamic system aliows the transition to simpler vibrating structures in a characteristic
way. The properties of stability can be then judged by global theorems and general statements,
based on modern matrix methods. For example, according to Thomson and Tait’s theorems, for a
so-called M-D-G-K-system, e.g. an axially loaded rotor influenced only by a pervasive damping,
a gyroscopic stabilization of the statically unstable system (K <0) is impossible.

On the contrary, for elastic rotors with distributed parameters there has existed till now
neither the formulation of an analogous general continuum model nor with exception of a paper
by Shieh{3] corresponding statements of stability, which prove stability or instability by means
of operator methods[4], without taking the usual path by a splitting into discrete parts of the
continuum [2].

This is the starting point of this paper as in [5, 6]. With the aid of one-dimensional continua,
such considerations will be extended to distributed, dynamic systems, which, incidentally, is the
aim of the investigations.

2. ROTOR MODEL AND EQUATIONS OF STABILITY

It appears, that the rotating Timoshenko-beam under axial pressure load in connection with
internal and external damping, as in Fig. 1, represents a general gyroscopic system in the above
sense.

In particular, a rod-shaped, circular, elastic solid body with the length I, which rotates in
stationary operation with a constant angular velocity w, has been taken into consideration. It
has a bending rigidity EI, a shearing rigidity xGA, mass per unit length 4 and a radius of
gyration k,. For the sake of simplification, all parameters may be constant. The column should
be simply supported on its two ends and subjected to a conservative, time-independent
compressive load F. Because the boundary of stability reacts extremely sensitively to trace-
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Fig. 1. Rotor model.

effects, it is necessary to include damping influences. Besides the usual, external damping,
which is set proportional to the absolute velocity of the shaft-center in the form

Fp: =~ dovas

internal damping should be considered, too. Realistically, the relation between the stress and
strain tensors has to be modified in the sense of a viscoelastic law of material. Academically
speaking, a viscous, internal damping, which is in the form

FD,' - div,,‘

proportional to the relative velocity of the shaft-center in a rotating coordinate system, in
analogy to the external damping, should be working here. As present investigations show, this
straightforward damping formulation is justified, because the results of both internal damping
mechanisms differ only quantitatively.

If the small bending vibrations of the rotor described by the position- and time-dependent
transverse displacements v(x, ) and w(x, ), as well as the angles of inclination ¢(x, f) and
W(x, t)-all of them measured in an inertial coordinate system-, one of the well-known principles
of mechanics yields the appertaining boundary value problem

1oy + dy, + di(v, + @W) ~ kGA(v — @) + Fo, =0,
pwy + dow, + di(w, — 0gv) ~ kGA(We + ) + Fw,, = 0,
'k @y — 2wk Y — Elp,, — kGA(1, ~ ¢) =0,
ukry + 2wopkr o, — ERp, + kGA(w, — ) =0, @.1

v()=wl) = e} = (D=0, j=0,L @2

The subscripts ¢ and x are derivatives with respect to time and position. According to
D'Alembert, all relations, eqn (2), can be vividly interpreted as equilibriums of forces and

momentums.
The boundary value problem, eqn (2), may be written in the alternate form{5, 6]

Mig}. + (D +G)lg], + (K+ N)igl =6, 3.1

[aD1” - Myla(Dle + D; + GHIg(N], + (K; +NDIg(DT} =0, (3.2)
where q(x, t) is a multidimensional representation vector in a functional space and M, D, G, K,
N, M,, D, G, K; and N; (j=0, /) are suitable, time-independent matrix differential operators.
For the example of a rotating Timoshenko-beam, the vector q contains in the form

=[v,w, 0, ¢1" 4.1
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the displacements v and w and the angles ¢ and y, while the matrices M to N; are declared as

w 0 0 0 d+d 0 0 0
0w 0 0 10 d+d 0 0
M= 1o o w2 o> P=1| o o 0 0
0 0 0 uk? 0 0 0 0
0 0 0 0
G= 10 0 0 0 ,
0 0 0 ~2aouk?
0 0 +2wouk® 0
(F - KGA)(“')::: 0 KGA("‘): 0
_ 0 (F— kGAX: ") 0 ~KkGA( "),
K=\ GA(), 0 ~EI(-+")y + kGA 0
0 kGA(- - ), 0 ~ EI(- - )+ kGA
0 dw 0 O 1 6 0 0
- "dﬂe 0 0 M;=B5=G; . 0 i 0 0 -
Nelo o 0 oy, BT{0 0oy ot 17U
0 o0 0 0 = 0 0 0 (-
%))

The representation according to eqn (3) is entirely equivalent to the well-known description of
discrete, dynamic systems, as in eqn (1) and can be interpreted as equations of stability of a
general circulatory, distributed system.

3. INSTABILITY CONDITIONS

Practical statements of stability do not exist, however, so that first of all only an evaluation
in detail is considered. For this calculation the manner of writing in operator form-—egn (3)—is
certainly of no use, so that appropriately one has to go back to the initial eqn (2).

Upon introducing the complex coordinates

z=v+iw, Y=o~ i=vV-1, 6]

as well as the dimensionless variables

e% rmt(or-EL) ®
and parameters
k)z EI };?2 Wy d
o f -E = 2 = - =
r (: »$=sGar F=Ep 0=, =1, M

a boundary value problem

AZ+Bi+Cf+Di+ Er=0,
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A=rs, B=12rs(8, +8—if}),
C =1~ 2irsU28, +38))—[s + 11 - fs)] :; ,
a2
D= 2{(5., + 8- 2rs(%8) ~ [s(8, + &)~ irQ)(1 - f5)] 5?} ®

4 2
E=(1- fs)-‘f?+(f+2:’s38¢)§%y—2m8g

for the transverse displacement z alone is obtained, when the angle of inclination y is
eliminated. Dots above the variable z denote derivatives with respect to dimensionless time 7.

In order to use the classical stability theory of Lyapunov, a class of solutions, derived from
the perturbation eqn (5), which can be approximated by means of convergent modal expansions
in a series, should always be singled out. For one-dimensional continua it is possible without
restrictions. For this purpose, the transverse displacement z (£ 7) is separated into a function of
position and one of time in the form

(g )= Z(H eV ®
Putting this into the boundary value problem, eqn (8), vields the pertinent eigenvalue problem

aZ"+bZ"+cZ=0, Z(H)=2'G)=0, j=0,1,
a=1-fs, b=—[s+r(1—f)A2—2[s(5, + &)+ irQ1 ~ f$)IA +(f +2isQ25)),
¢ = rsA* +2rs(8, + & — iA> +[1 - 2irsU28, +38)IA% + 25, + &, — 2rsQ28)A - 2iQ8;  (10)

for the generally complex eigenvalue A, where the dashes mark derivatives with respect to &

The real part of the eigenvalues determines stability or instability. If only the real part of a
single eigenvalue becomes positive, the general solution z(£, 7), as in eqn (9), contains terms,
which increase without limit, so that the axial compression of the rotor-as the fundamental
state, for which stability should be investigated, becomes uastable. Of particular interest is the:
dependence of the eigenvalues on the loading parameter f and speed of rotstion 1 with as
further parameters, the column-data r, s and the measures of damping &;,. When the real part of
the eigenvalues, e.g. changes from initially negative to positive values, because the load has
varied, there is the buckling force as a, boundary of the region of stability. On the other hand,
when the load is unchanged and the angular velocity increases, a so-called- critical limiting-
speed of rotation is reached.

The eigenvalue problem, eqn (10), holds in the form of the factors g, b, ¢ evidently
position-independent coefficients, so that a rigorous calculation of the eigenvalue equation is
ensured.

The exponential form

4
Z(a=§a;e"ﬁ an

as a general solution of the differential equation (10), whereby the four roots »; have to be
evaluated from the corresponding characteristic equation

av*+ b+ ¢ =0, (12)
gives, after fitting to the boundary conditions, eqn (10), a homogeneous, algebraic equation

system for the constants a; As a necessary condition for non-trivial solutions. the pertinent
coeflicient determinant must vanish, and this,

A} =0, (13)
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is exactly the valid eigenvalue equation, which is evaluated simultanecously with the charac-
teristic eqn (12).

Owing to the simple boundary values, eqn (10), especially here, the cigenform parameter »,
can be determined beforehand independently from A. Finally, the explicit, algebraic equation of
condition

rsA*+2rs(8, + 8 — iA* + {(nw)[r(1 - fs) + s] + 1
—~2irsQ(28, + 3822 + 2[1 + s(nw))(5, + &)
— i1 - fsXnw) - 2rsQ?8}A +{(1 - fsXn=)*

~ f(nmP - 2i08[1+ (nw P} =0, n=1,2,... (14
is obtained for the four-fold infinitely many eigenvalues A, to A.,.

The derivated eigenvalue equation (14) of the rotating, axially loaded Timoshenko-beam
which is simply supported, corresponds to the lowest order of eigenvalue n =1, which De
Pater{7)] has found for a discrete rotor system. Moreover, a range of special cases is included.
Neglecting the shearing deformation by s =0, ¢.g. leads from the Timoshenko-beam to the
model of the so-called Rayleigh-bar. If the terms of rotational inertia with reference to the
bending deformations are also suppressed, then r=0 is valid as well, and the simplest
bar-model, Euler’s column with its sufficiently known eigenvalue equation is the resuit.

Now I would like to go back again to the general eigenvalue equation (14). Mostly, its
solutions are computed numerically, but for the study of damping influences, also by means of
the perturbation method[8, 9). The essential results are noted in Figs. 2-4, where, the first, the
case without damping 8, = 0 should be discussed.

Because the transition to unstable solutions regulary ensues in a way, that from two
previously completely different pure imaginary eigenvalues of the order n a complex pair of
cigenvalues will be produced with a coincident imaginary part and correspondingly equally
large real part, one can limit oneself to a representation of the imaginary part of the eigenvalues
as a function of the angular velocity {} and the axial load f.

The first graph in Fig. 2 shows the variation as a function of the pressure load f for different
rotor speeds {},, while the second diagram illustrates the dependence of the angular velocity )
on several values of the load f,. The nth critical load can then be clearly recognized in a way,
that the imaginary part of the eigenvalues A,, and A,; assume coincident values. When these
critical loads of the order n and especially the buckling force for n =1 are then plotted as a
function of the rotor speed, the gyroscopic stabilization of the undamped rotating vibration
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Fig. 2. Imaginary part of the cigenvalues A as a function of velocity ) and load f (n =1, &, =0).



464 J. Wausr

o
f
f( 'ﬂ(ﬁg-%a" = 0
afl
Sy
— e
13 USSR SO rf; S
unstable a rf‘ﬁ
'rf"ﬁ stable
ot
.
sl
10 '_m,d,'ff
a7
basinut it il il ths Yooy oSl
87060
o e%0 06 300 30 o @

Fig. 3. Critical load f; (k= 1) as a function of velocity {3 (5; or &, =0, r=0.003, 5 = 0.009).
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Fig. 4. Critical load f, (k = 1) as a function of velocity (8 and §,% 0, r=0.003, 5 = 0.009).

system can be seen clearly, as in Fig. 3. Thus it is found, the buckling load increases with
angular velocity ). All statements are insignificantly modified generalizations of De Pater’s
results[7] about a pressed rotor with a massless shaft and a fixed rigid disc.

It is well-known from discrete systems, that the gyroscopic stabilization has to be examined
critically. According to the above mentioned theorems of Thomson and Tait it is extremely
sensitive when neglecting influences of damping. The evaluation verifies this assertion in an
impressive manner also for homogeneous shafts.

External damping cancels the gyroscopic stabilization again, Fig. 3, and the critical load is
independent of the angular velocity 0 and identical to the static buckling force.

Internal damping becomes more destabilizing, Fig. 3 again, and the critical load decreases
sharply with (). Above a definite limiting-speed of rotation even the unloaded Timoshenko-
beam has an unstable rotation; an eﬁect, which is well-known from classical rotor dynamics.

The influence of damping consequently operates in the same way as for a corresponding
single-mass-rotor, investigated by De Pater{7]. Even there, qualitatively the same phenomenons
appear, despite his remarks, which are incorrect.

If both the damping effects are actmg~—-that is the situation in practice—a gyroscopic
stabilization is possible, Fig. 4, once again, in fact, not only for a discrete rotor system, not
dealt with by De Pater, but also for the Timoshenko-beam, which is discussed here. There is a
specific ratio of external to internal damping, which leads to an increase in the boundary of
stability till nearly the limit of the undamped case, for a system with concentrated parameters
totally in agreement with the existing stability theory.
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4. GENERAL STABILITY THEORY
Finally, it is shown that most results for distributed rotor systems can be prodicted
qualitatively without computation, as well. Using a general theory of stability of one-dimen-
sional, circulatory vibration systems with distributed parameters, developed by Keixel{S, 6] on
the basis of Barston’s investigations{4}—similar considerations are derived by Tasso{10}—
general statements can be made. For this purpose, the real part of the eigenvalue A is generally
calculated. At this point the utility of the notation in operator form according to eqn (3)
appears, which enables a clear and compact description of the following points.
A formulation

qlx, ) = Q(x) e* (15)

of the solution g(x, f), in the same way as before for the deformation z(¢, 7), eqn (9), yields the
eigenvalue problem

MA*+(D+G)A + (K +N)J[QI=L{Ql =0, (16.1)
QI - {IMA%+ (D; + GPA + (K, + N)IQ =0, j=0,! (16.2)
also in operator form.
Considering the inner products

(Q*",LIQD =0,
Q" L*Q*D =0, an

where superscripts* denote the complex conjugate of Q or L, first adding and then subtracting
the eqns (17) gives

k—Re[Ald —Im[A]- g+ Re* A} =Im{A])- m =0,
n+Im[A]l-d—Refa]-g—2Re{A]-Im[A]-m =0, (18)

when the boundary conditions, eqn (16.2), are used. From the eqn (18) the real part of the
eigenvalues may be found in the form

22
Re {A]-svi-i;;{dtg——%—i&-m—+%\/{(d’-g’~4bn)2+4(dg~mn)’}}. (19)

The quantities m, d, g, k and n denote characteristic functionals, which are, respectively,
actions of inertia, damping and gyroscopic influences and, finally, conservative and circulatory
restoring forces. But also for distributed parameter systems a unigue classification is possible.

By a suitable definition of the definiteness of the functionals m, d, g, k and n a set of
theorems can be derived, which decides stability or instability. But only for special cases of
general circulatory systems are the statements useful in real situations.

For gyroscopic, conservative or general, noncirculatory systems, ¢.g. one obtains a general-
ization of Thomson and Tait's theorems. A conservative, gyroscopic m — g — k-system, the
rotating, axially loaded Timoshenko-beam without damping effects, e.g. can be stable even for
k<0, while if damping is to be added, a stabilization is impossible. Hence, 2 so-called
m —d — g — k-system is asymptotically stable for d, k>0, whereas it is always unstable for
d 20 but k <0. Most of the above mentioned, quantitatively calculated results have then been
proved.

5. CONCLUDING REMARKS
The dynamic stability of distributed, mechanical systems raises many interesting questions.
The example of rotating, axially loaded, homogeneous shafts is appropriate in a characteristic
way to formulate and then to solve a stability problem of a rather general circulatory system
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with distributed parameters. It appears, that a great number of parallels to the corresponding
stability problem of discrete vibration systems exists. Many results can be rediscovered, even-if
in modified form, and it can be supposed, that additional methods and abstractions can be
transferred advantageously.
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